Storage Research at ORNL

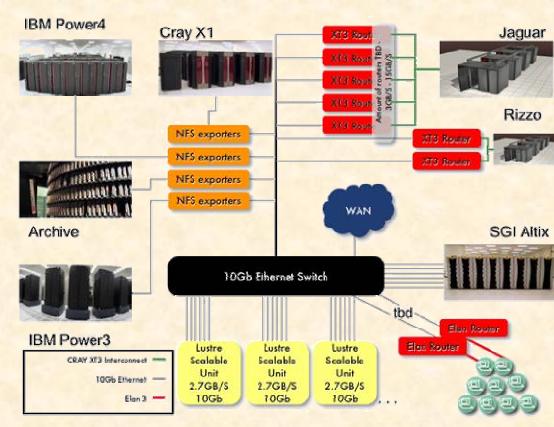
Presentation to HEC-IWG Workshop

Sudharshan Vazhkudai Network and Cluster Computing, CSMD

R. Scott Studham

National Center for Computational Sciences

Contributors: Sarp Oral, Hong Ong, Jeff Vetter, John Cobb, Xiaosong Ma and Micah Beck


Application Needs and User Surveys—Initial Observations

- GYRO, POP, TSI, SNS
- Most users have limited IO capability because the libraries and runtime systems are inconsistent across platforms.
- Limited use of Parallel NetCDF or HDF5
 - POP moving to P-NetCDF
 - SNS uses HDF5
- Seldom use of MPI-IO
- Widely varying file size distribution
 - 1MB, 10MB, 100MB, 1GB, 10GB

Current Storage Efforts for NLCF

- Future procurements require support for center wide file system
- Minimize the need for users to move files around for post processing.
- As most applications continue to do the majority of I/O from PE0 we are focused on the single client performance to the central pool.

NLCF Center Wide Filesystem

Using Xen to test scalability of Lustre to O(100,000) processors.

SSIS	Software
Files	ystem
Basi	c OS
Virtu	alization

OpenSSI	1.9.1
Lustre	1.4.2
Linux	2.6.10
Xen	2.0.2

Single System Image with process migration

OpenSSI

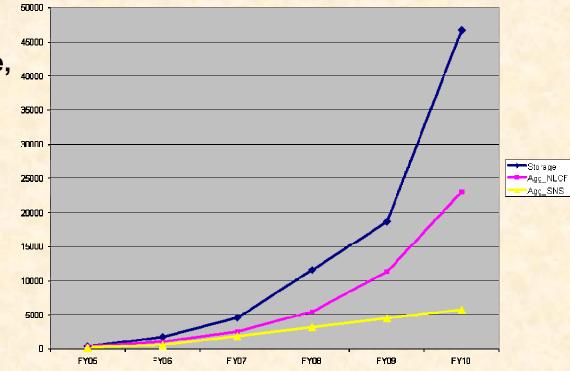
XenLinux Linux 2.6.10 Lustre **OpenSSI**

XenLinux Linux 2.6.10 Lustre **OpenSSI**

XenLinux Linux 2.6.10 Lustre **OpenSSI**

XenLinux Linux 2.6.10 Lustre

Xen Virtual Machine Monitor


Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

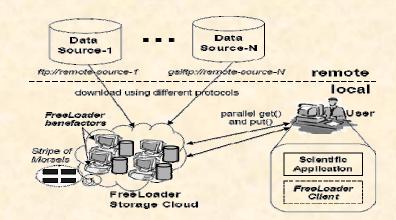
Data Management Infrastructure for the Spallation Neutron Source and NLCF

- 50 PB by 2010
- Need to archive, annotate, share, move, replicate
- Current efforts revolve around Lustre, SRB and HPSS
- Connection between database-assisted data management and filebased raw data I/O

FreeLoader: Collaborative Caching for Large Scientific Data

http://www.csm.ornl.gov/~vazhkuda/Morsels

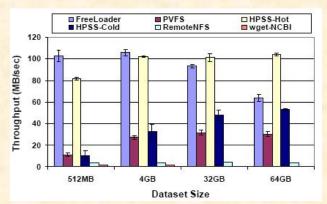
Problem Space:


- Data Deluge: Increasing dataset sizes (NIH, SDSS, SNS, TSI)
- Locality of interest: Collaborating scientists routinely analyze and visualize these datasets
- Desktop, an integral part: End-user consumes data locally due to ever increasing processing power, convenience & control; But limited by secondary storage capabilities

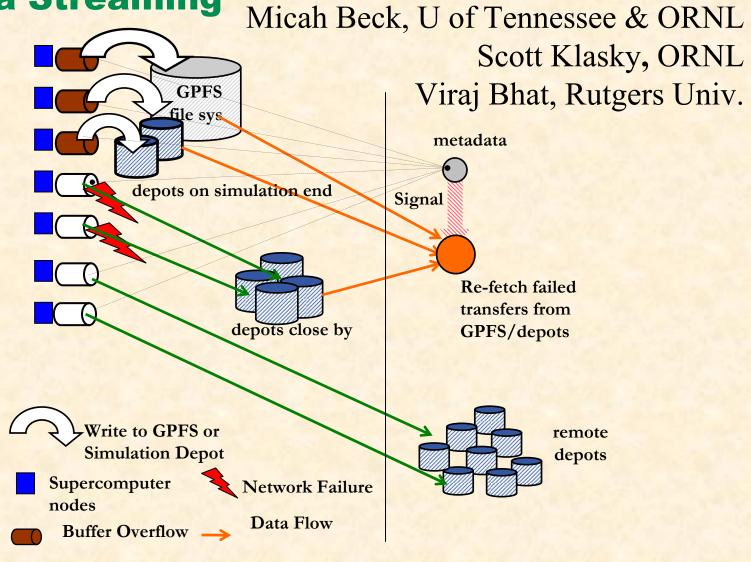
FreeLoader Aggregate Storage Cache:

- Scavenges O(GB) of contributions from desktops
- Parallel I/O environment across loosely-connected workstations, aggregating I/O as well as network BW
- NOT a file system, but a low-cost, local storage solution enabling client-side caching and locality

Enabling Trends:


- Unused Storage: More than 50% desktop storage unused
- Immutable Data: Data is usually write once read many, with remote source copies
- Connectivity: Well connected, secure LAN settings

Initial Results:


- Striping across desktops delivers comparable aggregate BW to file systems
- In SC'05

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Logistical Networking Used for Failsafe Wide Area Data Streaming No. 1 P. 1 H. CT. 2000

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Future Directions for ORNL storage

- Important to improve serviceability of NLCF high-end storage
 - Center wide file system
 - heterogeneous set of clients
 - Focusing on single client IO performance
 - Aggregate IO performance must scale with # of disks, clients
 - Failover to
 - storage caches or archival storage seamlessly
- Availability
 - Potentially large # of disks in future storage systems
 - Replication based on access patterns of datasets
- Profile NLCF applications' I/O usage
- Track and benchmark I/O subsystems on NLCF platforms

Acknowledgments

- DOE Office of Science
- ORNL LDRD—TCSS Initiative
- DOE Basic Energy Sciences
- NSF-TeraGrid

